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Non-commutative geometry
and quantum groups

By Shahn Maj id

Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge CB3 9EW, UK

A search for the uni cation of quantum theory and gravity has forced mathematical
physicists to re-evaluate the meaning of geometry itself. The surprising answer has led
to an explosion of research papers, a vast collection of examples, and to revolutions
in at least three branches of pure mathematics. It o¬ers insights into the origin of
the universe and the nature of physical reality.
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1. Introduction

Theoretical physics is something of a quest, a search for a philosophical and math-
ematical formulation of the laws that govern nature that is both consistent and
complete. Both Einstein’s formulation of gravity as the geometry of space-time, and
the discovery of quantum theory, were enormous conceptual leaps made in the early
decades of the 20th century. However, these two theories are not really very compat-
ible (one may recall Einstein’s famous dislike of quantum mechanics) with the result
that a complete uni ed theory has remained something of a `holy grail’. Recent
developments may be starting to change that.

First of all, it should not be forgotten that classical geometry, which Einstein used
to formulate gravity, grew out of our macroscopic intuition and experiences, such
as the trajectories of particles. On a subatomic scale the world simply is not like
that. There are no precise trajectories, everything is `fuzzy’ or `wave-like’. There is
therefore no logical reason to think that one can cling to classical geometry and still
develop a theory that truly uni es both quantum e¬ects and gravity. It is more likely
that both will need to be modi ed in the process of developing a uni ed theory. Such
a theory could be viewed as a generalization of geometry compatible with quantum
theory (or vice versa) and could be expected to be as radically di¬erent as the leap
from Euclidean to non-Euclidean geometry. If history is any guide, it is further likely
that the conceptual and mathematical structure of the required `quantum’ geometry
would itself be a guide to  nding such a complete theory of nature. One might
reasonably regard the understanding of the mathematics of quantum geometry as a
prerequisite.

This has not stopped physicists speculating about quantum gravity, black holes
and the birth of the universe (regimes where both quantum and gravitational e¬ects
are strong), but those speculations can never be anything more than some kind
of approximation, breaking down at some point. It has also not stopped physicists
developing more and more complicated theories, some with quite elegant formulations
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90 S. Majid

(such as string theory), but nevertheless based on conventional ideas of geometry and
quantum theory. The truth of the matter is that physicists have not yet had at their
disposal any actual mathematical framework of a more radical `quantum’ geometry
which might be usable for any truly uni ed theory.

This conceptual problem has begun to be addressed in the last two decades of the
20th century, and could well bring us within reach of the `holy grail’ in the next one.
What is the correct geometry of the quantum world? First of all, note that in the clas-
sical mechanics that describes the macroscopic world, we work with coordinates like
x; p (the position and momentum of particles). In quantum mechanics these become
operators x, p and xp no longer equals px (the operators do not commute). This has
the interpretation that it matters which you measure  rst, x or p, and this in turn
is related to the famous Heisenberg uncertainty principle, that you cannot measure
both of them accurately at the same time. This non-commutativity of position and
momentum `coordinates’ is, therefore, completely fundamental to quantum theory
as we know it. Hence, to have a fully geometrical picture in the quantum world, one
needs in fact a new foundation of geometry based on non-commuting operators in
place of usual coordinates. This, broadly, is `quantum’ or `non-commutative’ geom-
etry. Note that in conventional quantum mechanics, the components of the position
x still commute among themselves, but as soon as one has a more general geometry
to include the p, there is no need to assume this either, which is one of the novel
theoretical predictions coming out of non-commutative geometry. Such a prediction,
if observed, would amount to a new physical e¬ect or `force’ in nature. To put it
in perspective, non-commutativity of the components of the appropriate momentum
p is already observed in nature (although not usually discussed in this manner): it
corresponds to curvature in position space or, very roughly speaking, to gravity. The
new physical e¬ect would be reciprocal to this under an interchange of position and
momentum. And all three e¬ects would be bound up in the overall structure of the
combined x and p.

Today, what is seen is mainly a rich collection of examples of non-commutative
geometry, the most accessible of which are called `quantum groups’. Even without the
above philosophical considerations, quantum groups’ structures have thrust them-
selves forward in the last two decades in a variety of settings in mathematics and
mathematical physics. They have already revolutionized at least three branches of
pure mathematics: notably, knot theory, Poisson geometry and representation theory.
More than any grandiose mathematical proposals for non-commutative geometry, the
richness of the examples and applications, and the foundation of the theory on them,
is the most convincing evidence that mathematical physics is on the right track. Fig-
ure 1 shows the explosive growth of this theory,y not including many additional
papers on related topics.

Also emerging are some powerful tools, notably a new kind of `braided algebra’
as a mathematical calculus for non-commutative geometry. Instead of manipulat-
ing symbols as in usual algebra, algebraic operations are `wired up’, much as the
processing modules of a computer are literally wired up. Information ®ows along
the `wires’ except that (in braided algebra) the under- and over-crossings of wires
are non-trivial (and generally distinct) operations. This too is inspired by quantum
physics, where matter particles or `fermions’ (such as electrons) have the unusual

y Data complied from BIDS: published papers since 1981 with title or abstract containing `quantum
group ’, `Hopf alg ’, `non-commutative geom ’, `braided categ ’, `braided group ’, `braided Hopf ’.
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Figure 1. Growth of research papers on quantum groups.

feature that when they are exchanged in a physical process there is an additional
minus sign that goes along with the transposition. It is this minus sign that is the
origin of the famous Pauli exclusion principle: that two electrons cannot be in exactly
the same state. In braided algebra this minus sign associated to `fermionic statistics’
is replaced by a more general matrix operation associated instead to more general
`braid statistics’. The reader may notice a vague similarity between the Pauli exclu-
sion principle here and the Heisenberg uncertainty principle above. In fact, the idea of
non-commutativity as in quantization and the idea of braid statistics are intimately
related in non-commutative geometry, as we will see.

To get an immediate ®avour of what these ideas mean in practice, consider the
following elementary computation. For a polynomial function f in one variable, de ne
di¬erentiation by

f 0(y) = (x 1(f(x+ y) f(y)))x= 0: (1.1)

If xy = yx is assumed in making the calculation, one obtains the usual Newtonian
di¬erentiation. But if we suppose yx = qxy in computing the right-hand side, for
some parameter q, we obtain

f 0(x) =
f(x) f(qx)

(1 q)x
: (1.2)

This is the celebrated `q-deformed derivative’, so called because it tends to the usual
derivative as q ! 1. Although known to mathematicians in a di¬erent context in
1908 (Jackson 1908), such q-derivatives have their natural place in the geometry of
quantum groups. We also see by this example that non-commutativity leads to a
kind of ` nite di¬erence’ or discretization, which is, therefore, a general feature of
the di¬erential geometry of the quantum world.

Finally, returning to theoretical physics, there emerges an interesting philosophical
principle visible only in quantum geometry: a self-duality between quantum theory
and gravity. The duality here is a kind of `Fourier transform’, and a remnant of it in
conventional quantum mechanics is `wave{particle duality’. We will conjecture that
it provides a new foundation for physics in the 21st century.
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2. Algebras with everything

If we are serious about the uni cation of quantum theory and geometry, it should be
self-evident that we must  rst cast both of them in the same language. The language
required is that of algebra. For our purposes, an algebra means an object A equipped
with a product sending a; b 2 A to a b 2 A in a bilinear manner. One writes the
product as a map

A A! A; (2.1)

where the tensor product symbol signi es that the product is linear with respect
to each of its two inputs (we are assuming that A is a vector space so that we can
add elements of A and scale them). In addition, we demand associativity, which is
that the two compositions

A

A A

id % &
A A A

id & %
A A

(2.2)

coincide, where id denotes the identity map. This is a fancy way of saying that
(a b) c = a (b c) for any a; b; c 2 A. We also require a unit 1 2 A such that
a 1 = a = 1 a for any a, which too can be expressed in terms of maps. This abstract
approach will be relevant later on. In practical terms, however, we are typically
interested in particular elements in the algebra that generate the others. In this
case, the algebra amounts to specifying equations that these elements obey among
themselves and various rules for their manipulation. This is closer to what one means
colloquially by `algebra’, in contrast to the de nition above.

We turn now to our task. First of all, quantum mechanics, as usually formulated, is
expressed in terms of wave functions  (x) obeying Schr�odinger’s equation. It might
be argued, therefore, that even quantum mechanics assumes a usual space whereon
the wave functions live. However, the points in this space are no more than the possi-
ble macroscopic values that can result from a position measurement (with probability
j (x)j2). They re®ect a particular range of results for questions one can ask about
the quantum system but are not the quantum system itself. There are still operators,
such as x, p, and, in the usual interpretation of quantum mechanics, any self-adjoint
operator on the set (in fact, Hilbert space) of wave functions is a valid `observable’
or question that one might ask of the system. The only algebra in this conventional
picture is that of all (bounded) operators on the set of wave functions, which is the
same algebra for all quantum systems. (Instead, the content of the quantum system
rests in the choice of Hamiltonian operator.) In quantum statistical mechanics, one
goes slightly further and considers as a `state’ a density matrix or convex linear com-
bination of projection matrices associated to wave functions  i(x) with weighting
si, where

P
si = 1, but the structure is otherwise the same. These comments also

apply to quantum  eld theory where the role of x is played by a  eld, but again it
is a  eld on conventional space-time and again it merely re®ects a choice concerning
what kinds of questions one is asking about the quantum theory. In e¬ect, we project
our preconceptions and intuition derived from macroscopic geometry onto quantum
theory by focusing on particular states and observables.
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Figure 2. (a) Two-dimensional geometry visualized in three dimensions;
(b) coordinate functions.

There is, however, a more sophisticated point of view of quantum theory which
brings out more of its intrinsic quantum structure. This is the C -algebraic point of
view, which was applied particularly in mathematical physics by G. W. Mackey and
I. Segal in the 1960s (see Bratteli & Robinson 1979). Here, the `observables’ of the
quantum system are the elements of any abstract algebra A with certain properties
(such as an involution and a norm). A `state’ in this picture is any positive linear
functional : A ! . It assigns to an observable a 2 A its expectation value (a).
This includes the standard version of quantum (statistical) mechanics as a special
case, with A the algebra of all operators on a Hilbert space of states and

(a) =
X

i

sih ijaj ii (2.3)

in the usual notations in quantum theory. Our more general approach, however,
allows for the possibility that not all operators are allowed observables: A might be
only a subalgebra of all operators. With this caveat, the new approach is essentially
equivalent to the usual one. A theorem of Gelfand and Naimark asserts that for any
A and choice of vacuum state 0, one can build up a Hilbert space and identify A as
a subalgebra of its operators. In this way, quantum mechanics becomes the study of
an algebra A and positive linear functionals on it.

The particular algebra A of observables allowed in the quantum system is called
the kinematic structure and it is exactly this that is missed in the conventional
point of view. Just as every manifold or curved space can be viewed concretely as
embedded in ®at space of a suitably high dimension (see  gure 2a), in the same way,
the subalgebra that A `carves out’ in the algebra of all operators is the `quantum
geometry’ or kinematic structure of the model. Put another way, the algebras in
quantum theory are many and more varied than just the algebra generated by the
Heisenberg commutation relations

xp px = i ; (2.4)

which (in one guise or another) is the only algebra usually encountered in a  rst
course on quantum mechanics. Here, is Planck’s constant.

Next, we cast usual concepts of geometry too in an algebraic form. This is 19th-
century work but was extensively developed early on in the 20th century by Zariski,
Grothendieck and others. Thus, in algebraic geometry we work with the equations
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satis ed by the coordinates on spaces, rather than thinking of points themselves. For
example, a circle is the equation

x2 + y2 = 1; (2.5)

by which we mean it is the set of points P in the plane for which the coordinate
functions x(P ) and y(P ) obey this equation. Here x; y are functions that assign to P
in the plane its two coordinates (as shown in  gure 2b). The equation (2.5), however,
makes sense without reference to points, but instead with reference to the algebra
generated by x; y under pointwise multiplication and addition

(xy)(P ) = x(P ) y(P ); (x + y)(P ) = x(P ) + y(P ); (2.6)

for all points P . Given a set X of points, we can always consider its algebra of
functions [X] (often generated by particular coordinate functions such as x; y in
the above example). But note that such algebras are necessarily commutative,

(xy)(P ) = x(P )y(P ) = y(P )x(P ) = (yx)(P ); (2.7)

for all points P , i.e. xy = yx as an intrinsic feature of such algebras.
Conversely, a theorem also due to Gelfand and Naimark says that every commu-

tative C -algebra A arises as the algebra of functions on some (topological) space.
Indeed, the points P can be identi ed with the `states’ or positive linear functionals
A! , sending any function x to x(P ). Thus, there is, in fact, quite a bit of common
ground between quantum theory and classical geometry. Both are described by alge-
bras and positive linear functionals. The main di¬erence is that classical geometry
corresponds  rmly and intrinsically to A commutative.

However, although this point of contact was striking, until recently it has had
relatively little impact because the two lines of development went on in quite dif-
ferent directions. C -algebras and other aspects of operator theory were exten-
sively developed in connection with quantum theory, but the `non-commutative
geometrical view’ was largely limited to extending topological ideas, such as mea-
sures and K-theory, to the case of non-commutative operator algebras (Connes
1994). There have been occasional links with physics (e.g. the quantum Hall e¬ect)
and promising attempts at deeper aspects of non-commutative geometry (notably,
Connes’ `spectral geometry’), but the full infrastructure of non-commutative di¬er-
ential geometry|coordinate charts, metric, connections, curved spaces, etc.|cannot
easily be approached in this way. Meanwhile, algebraic geometry too was pushed for-
ward by several great mathematicians (often in connection with number theory and
the theory of algebraic groups and their representations). By now it includes almost
all familiar geometrical notions, including those mentioned above, via algebraic tools
such as `sheaf theory’ and `etale cohomology’. However, most of that development
strongly assumes commutativity and does not work at all well when the algebras are
non-commutative.

What happened to change all this and bring about a convergence of these two
traditions? In practical terms it was the discovery of `quantum groups’ in the mid-
1980s. These were a rich vein of examples of non-commutative algebras with natural
`generators’ (coordinates) and a clear geometrical structure. Hitherto, there had been
very few concrete algebras to play with, namely the Heisenberg algebra (2.4) and
variants of it, such as the `non-commutative torus’; and one cannot found a theory of
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geometry on one (albeit beautiful) example. Moreover, quantum groups have many
applications in their own right, bringing many potential bene ts of non-commutative
geometry beyond our thoughts about quantum gravity. The application of quantum
groups and the geometrical point of view in quantum chemistry, for example, remain
largely unexplored.

3. Quantum groups

Quantum groups are the simplest convincing examples of non-commutative geometry.
There are two main classes of these at the moment: one as `generalized transforma-
tions’ arising in solid state physics (Drinfeld 1987; Jimbo 1985); and another arising
from toy models of quantum gravity (Majid 1988). We shall brie®y describe both.

By way of preamble, let us recall that a group is a set with a product law, a unit
and an inversion operation. Of course, groups have many applications, notably in
crystallography. The groups with a clear geometrical structure, however, are smooth
continuous ones, the so-called Lie groups. They typically arise as transformation
groups, for example, the group SO3 is the group of rotations in three dimensions.
If you make two rotations in succession, the composition is a third rotation about
some other axis. Similarly, the group SL2 is that of 2 2 matrix transformations of
determinant 1. Moreover, in nitesimal such transformations form `Lie algebras’, and
all simple Lie algebras over (the basic building blocks in Lie theory) were classi ed
at the start of the 20th century; their beautiful properties are still being studied
today. Such objects have featured since the 1950s in elementary particle physics as
the symmetries involved in the fundamental forces of nature. We want to give some
equally beautiful generalizations of these objects. By the way, it is possible to skip
this entire section if you prefer not to go into the mathematics.

Consider  rst of all the `quantum plane’ A2
q. This is the algebra generated by

variables x; y but with the relations

yx = qxy; (3.1)

instead of commutativity. Here, q is a non-zero numerical parameter. When q = 1,
we can consider x; y as the coordinates on an actual plane as we did above, but when
q 6= 1, the algebra is non-commutative and, hence, there is no usual space underlying
it. We also have higher-dimensional quantum spaces of many kinds depending on the
relations and parameters. In particular, the quantum group SLq;2 has generators a,
b, c, d with the six relations

ba = qab; dc = qcd; ca = qac;

db = qbd; bc = cb; ad da = (q 1 q)bc;

)
(3.2)

which describe a four-dimensional q-space (they become the relations of commuta-
tivity when q = 1), and the additional relation

ad q 1bc = 1; (3.3)

which sets the `q-determinant’ to 1.
There is nothing much that need concern us about the exact form of the above

relations. Apart from giving the expected relations among coordinates when q = 1,
their exact form is largely dictated by requiring that various properties of 2 2
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matrices and their action on vectors go through even when q 6= 1. Thus, if x; y
generate a quantum plane, then

x0 = ax + by; y0 = cx + dy (3.4)

obey the relations y0x0 = qx0y0 of the quantum plane as well. In mathematical terms,
this `quantum transformation’ is an algebra map A2

q ! SLq;2 A2
q . Note that the

arrow goes in the reverse direction to what one might have expected if one thought
that the matrix was being combined with a vector to give another vector. This is
because the a, b, c, d, etc., are not actual numbers but abstract symbols having
values only in a representation of the algebras concerned.

To complete the picture here, we need to understand how the group structure itself
is expressed in our algebraic language. In the above example, the ability to multiply
two matrices to get a third matrix corresponds to the assertion that if a0, b0, c0, d0

are a second mutually commuting copy of SLq;2, then

a00 b00

c00 d00 =
a b
c d

a0 b0

c0 d0 (3.5)

obeys the same relations. In mathematical terms, the group law is expressed as an
algebra map : SLq;2 ! SLq;2 SLq;2 called the `co-product’, where

a = a a+ b c; b = b d + a b;

c = c a+ d c; d = d d + c b;

corresponds entry by entry to the multiplication of matrices (3.5). One can write it
more compactly as

a b
c d

=
a b
c d

a b
c d

: (3.6)

Likewise, the unit matrix can be viewed as a map : SLq;2 ! called the `co-unit’,
and the matrix inversion can be viewed as a map S : SLq;2 ! SLq;2 called the
`antipode’ or `co-inverse’. These constructions can also be cast into the setting of
operators and C -algebras as in x 2 (see Woronowicz 1987).

The formal de nition of a `quantum group’ or `Hopf algebra’ is:

(a) an algebra H with a unit element 1;

(b) a co-algebra structure on H with a co-product and a co-unit ;

(c) the above compatible with each other and with an antipode S.

A co-algebra is just like an algebra (2.1){(2.2) but mapping in the opposite direction.
Thus there is a map sending H ! H H that is co-associative in the sense
of (2.2) with the arrows reversed (and in place of the product). And, having
both structures, the axioms of a quantum group are invariant under the reversing of
arrows, interchanging products and co-products, etc. Following from this, for every
quantum group H (with some technical caveats), there is another quantum group
H . The required H here is essentially the space of linear maps H ! endowed
with a certain Hopf algebra structure determined by that of H (and vice versa). Note
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that if H were a quantum system, then, as explained in x 2, H is where the states
would live. We will return to this later on.

For example, dual to the above matrix quantum group SLq;2 is the enveloping
algebra quantum group Uq(sl2). It can be described explicitly as generated by h, x + ,
x , say, with the relations and co-product

x + x x x+ =
qh q h

q q 1
; hx x h = 2x ;

h = h 1 + 1 h; x = x qh=2 + q h=2 x :

The mathematically minded reader may recognize here that, as q ! 1, the relations

[x + ; x ] = h; [h; x ] = 2x (3.7)

of the Lie algebra sl2. We will discuss Lie algebras more precisely in x 5, but, for
our present purposes, we understand [x + ; x ] as x + x x x + , etc., in which case,
the algebra generated by (3.7) is called the `enveloping algebra’ U(sl2) of the Lie
algebra sl2. Its co-product x = x 1 + 1 x , etc., corresponds, in physics,
to the addition law for angular momentum; the action on a tensor product system
is the sum of the actions on each part. Similarly, one has quantum groups Uq(g)
associated to every simple Lie algebra g as a deformation of its enveloping algebra
U(g) (Drinfeld 1987; Jimbo 1985). It is worth noting that although the concept of
a quantum group was introduced by H. Hopf in the 1940s, no signi cant classes
of examples going truly beyond usual groups or Lie algebras were known until the
mid-1980s, when the modern theory arrived.

The second class of quantum groups arose from the point of view of quantum
mechanics combined with gravity (Majid 1988). The simplest of these is the so-
called `Planck scale’ quantum group [x] / [p], generated by two variables x, p
with

xp px = i (1 e (c2=M G)x ); x = x 1+1 x; p = p e (c2=M G)x +1 p:

where G is Newton’s gravitational constant, c is the speed of light, and M is a remain-
ing parameter. The co-product here corresponds as in (3.5) to the multiplication of
matrices of the form

e (c2=MG)x 0
p 1

:

We therefore obtain the coordinate algebra [X ] of the classical group X of such
matrices when ! 0, which is the classical mechanical system of which the Planck-
scale quantum group is the quantization. The non-triviality of the group X cor-
responds to a degree of curvature in the classical system. Meanwhile, in the limit
G! 0, we obtain the usual Heisenberg algebra (2.4) of quantum mechanics in situa-
tions where we can consider that x 0. In the general case, we have both quantum
and gravitational features! In particular, a particle with Hamiltonian p2=m starting
out at x 0 and moving towards the origin will, at large distances, behave like a
usual free particle. As the particle approaches the origin, however, it will go more
and more slowly and will, in fact, take an in nite amount of time to reach the origin.
This is quite similar to the behaviour of a particle as it moves towards the event
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horizon of a black hole of mass M . This second class of quantum groups is self-dual,
in that the dual quantum group has a similar form.

It should be stressed that this is only a toy model; some further ideas will surely be
needed to really describe a black hole combined with quantum mechanics in this way.
On the other hand, this second class of quantum groups also includes one associated
to every complex simple Lie algebra g, the quantum group [G ] / U (g). Here, g
is a certain other Lie algebra dual to g (see below) and G is its associated group.
It is interesting that this family of quantum groups is just as general and natural as
the Uq(g) family, although less well studied to date. A puzzle here is that, while both
of these quantum groups spring from the same data|a simple Lie algebra g and
certain structure on it|there is, to date, no known direct relation between them:

g
. &

Uq(g) ?! [G ] / U(g):

4. Some beautiful applications

Before proceeding, we turn to some of the reasons to be interested in quantum groups
in their own right. In fact, there are diverse areas of mathematics that were both
revolutionized and related to each other by quantum groups.

(a) Knot theory

This is an age-old problem, considered, for example (without much success), by
the great 19th-century physicist Kelvin: how can one tell if a knot, such as the trefoil
knot in  gure 3a, is trivial, i.e. can be unknotted into a circle (other than by trial
and error). Similarly, how can one tell if two knots are really the same? One would
like something computable on any knot that has the same value if (and, ideally, only
if) the knots are the same. The theory of such `knot invariants’ made slow progress
for most of the century but was revolutionized in the mid-1980s, about the time that
quantum groups were being discovered and in correlation with that. Speci cally,
Jones (1985) showed how to construct a polynomial in a variable q; q 1 for any knot,
often able to distinguish knots. He was motivated by the theory of solvable lattice
models (see a later section) and, through this, his polynomial knot invariant turned
out to be connected with a representation of the quantum group Uq(sl2). Developing
that, Reshetikhin & Turaev (1990) obtained polynomial knot invariants associated
to the representations of every quantum group Uq(g). A problem that had seemed
intractable for most of a century suddenly had a vast number of solutions.

We will brie®y describe these knot invariants. In fact, Shakespeare was perhaps
on the right track when Viola in Twelfth Night says

O time, thou must untangle this, not I
It is too hard a knot for me t’untie.

Thus, rather than thinking of the knot in three-dimensional space as in  gure 3a
(a problem apparently too hard to resolve), we interpret the vertical axis as time
and read the knot as describing the trajectories of particles V and antiparticles V
®owing down the page ( gure 3b). Here, the downward arcs are the particles ®owing
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Figure 3. Trefoil knot (a) and construction (b) of its invariant.

down while the upward arcs in  gure 3a are regarded in  gure 3b as antiparticles
®owing down rather than particles ®owing up. (It was the physicist R. Feynman who
famously remarked that an antiparticle is just a particle going backwards in time.)
When one particle passes over or under another, we apply some kind of operation
R according to the ®avour of the crossing. In this way, as time proceeds it `scans’
the knot from top to bottom, creating particles as needed, interacting them at the
crossings, and  nally fusing particles and antiparticles as needed. The total process
is computable and, very roughly speaking, is the knot invariant as a function of any
parameter q on which R might depend.

In e¬ect, rather than viewing the knot in three dimensions, we regard it instead as
a process for the interaction of particles and antiparticles moving in one space and
one time dimension, according to how the original knot looked on the page. We need
to know that if we drew the knot from a di¬erent angle and did our process from
that point of view, we should get the same answer. We also need to know that if we
distort the knot without cutting it then we get the same answer, all of which depends
on choosing R carefully. The latter part of the problem can be reduced mainly to the
braid relation in  gure 4. These braids are topologically the same, so replacing one
with the other in a complicated knot would not change it. Therefore, we require that
the corresponding operations R should give the same total process on three particles.
This is the so-called quantum Yang{Baxter equation for R also shown in  gure 4.
Here we suppose that the states of the particle V are described by a vector space
and write the interaction process R sending V V ! V V concretely as a matrix
with four indices (and we use Einstein’s summation convention that repeated indices
are to be summed over). We also require similar relations where some strands are
antiparticles. The remainder of the problem can be focused mainly on the observation
that a harmless twist in the knot can appear untwisted when viewed from a di¬erent
angle, so that the number of crossings themselves can change. In typical examples,
the matrices R, while not invariant under such harmless twists, usually change in
a simple way that can be compensated for by hand. Actually, what one obtains in
this way is not exactly a knot invariant but an invariant of ribbons or framed knots.
Apart from these subtleties, these are the main constraints that R have to satisfy.

As for the choice of R, a particle in physics is not merely a vector space but
typically forms a representation V of a Lie algebra g, and its conjugate the dual rep-
resentation V . When particles are interchanged, one usually has either an exchange
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Figure 5. Solvable lattice model in statistical mechanics has weight R at each vertex.

factor R = 1 (for fermionic particles like the electron) or the trivial exchange R = 1
(for bosonic particles like the photon). Neither of these choices gives interesting knot
invariants, but when we look instead at representations of the quantum groups Uq(g),
we  nd a much more non-trivial matrix R (depending on q) whenever two representa-
tions of the quantum group are exchanged. We can then proceed as with the heuristic
particle picture above but with V a representation of the quantum group Uq(g) and
V its dual representation. They are created together as the canonical element of
V V (or a certain other element of V V ) and are fused by the evaluation map
V V ! (or a certain other map V V ! ). The result is a function of q, and
this, more precisely, is the construction of the knot invariants from quantum groups.

We note in passing that there are also potential biological applications, for example
for detecting the allowed states of tangled or knotted DNA molecules.

(b) Solvable lattice models and integrable systems

It is a testament to the fertile role of physics in pure mathematics that some of the
main ingredients above actually came out of solid-state physics in two dimensions.
Thus, in statistical mechanics one has a large collection of distinct states of the system
and studies its bulk properties through the partition function, a certain weighted sum
over the states. For example, consider the model of a crystal in  gure 5, where a state
is an assignment of bonds throughout the lattice. We write the Boltzmann weight at
each vertex as the entry of a matrix R according to the value of the bonds around
the vertex. The partition function is

Z( ) =
X

s tates

Y

vertices

Ri
j

k
l( ); (4.1)

where ijkl are the values of the bonds in the given state surrounding the given vertex.
We suppose the weight depends on a parameter .

Working in a di¬erent (but broadly equivalent) setting, Baxter (1982) described
conditions on R that allowed for the partition function to be computed explicitly
using a `corner transfer matrix method’. The resulting functions often had beautiful
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connections with number theory and the theory of modular forms (not connected
with A. Wiles’s recent proof of Fermat’s theorem, but in the same general ball-
park). The required conditions were that R depends on a parameter and obeys a
parametrized version of the Yang{Baxter equation in  gure 4. So the key idea behind
the knot invariants also makes these models solvable. Later on, I. Sklyanin, L. D. Fad-
deev and others recast the corner transfer matrix method more algebraically through
a quantum group with a matrix of generators and relations de ned by R( ). The
parameter-free versions of these led to quantum groups such as SLq;2 and Uq(sl2).
The relevant model for the latter (the so-called XXZ model) consists of nearest-
neighbour spin interactions and a uniform magnetic  eld (controlled by a parameter
q) running through the lattice.

We should also consider the continuum limits of such models as the lattice spacing
tends to zero. In many cases, one obtains a conformally invariant quantum  eld
theory. Such `conformal  eld theories’ turned out to have their own rich algebraic
structure (called `vertex algebras’), and were connected with modular forms, the
`monster group’ and other topics. One of them (the Wess{Zumino{Novikov{Witten
model) underlies the quantum group knot invariants above.

Finally, we should consider the classical mechanical systems underlying the con-
tinuum limits of the exactly solvable lattice models. These turn out to be certain
nonlinear, but completely integrable, partial di¬erential equations. A typical feature
of such equations was the presence of `soliton’ solutions, and a method of classi-
cal inverse scattering had earlier been developed to describe them (see Faddeev &
Takhtajan 1987). Thus, one can trace a certain continuity of ideas through several
key developments in mathematical physics.

(c) Revolutions in Lie theory

We have mentioned that the concept of a Lie algebra g is one of the most central
and beautiful in mathematics and physics. The de nition is innocent enough: a vector
space g and a `Lie bracket’ map [ ; ] sending g g ! g and obeying

[x; x] = 0; [x; [y; z]] + [y; [z; x]] + [z; [x; y]] = 0; (4.2)

for all x; y; z 2 g, but the resulting theory of such objects is deep and extensive.
Originally due to Sophus Lie, E. Cartan and others in the late 19th century, this
theory of Lie algebras has itself undergone a rejuvenation in the last two decades
because of quantum groups.

First of all, we have already given the example of sl2 and its relation with quantum
groups in x 3. By analysing this and, in general, how the quantum groups Uq(g)
behave as q ! 1, we can add certain concepts to Lie theory that correspond to the
tiny di¬erence between Uq(g) and the enveloping algebra of g when q is in nitesimally
close to 1. The resulting concept of a Lie bialgebra consists of a usual Lie algebra
g equipped with a `Lie co-bracket’ : g ! g g. The latter is like an in nitesimal
version of the co-product of a quantum group, and implies, in particular, that
for every Lie bialgebra g, there is a dual g . These ideas (due to Drinfeld (1983))
have allowed mathematicians to go back and understand many hard constructions in
conventional Lie theory in a more elegant and natural manner, as well as to obtain
entirely new results.

Also, one can formally regard quantum groups such as SLq;2 as some kind of `quan-
tization’ (even though they are not really the algebra of observables of a true quantum
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system and q need not be related to Planck’s constant). The classical mechanical sys-
tem is necessarily described by a so-called Poisson bracket on the underlying classical
group. These Poisson brackets have remarkable properties connected to the `complete
integrability’ of the models. They have led to many developments in the di¬erential
geometry of classical Lie groups themselves.

Finally, there is an important subalgebra Uq(n ) Uq(g), which can be used to
generate representations of the whole quantum group from a `vacuum’ vector. Lusztig
(1993) introduced a nice description of this subalgebra in terms of certain advanced
concepts of `perverse sheaves’ and `shifted’ perverse sheaves from algebraic geometry.
Without going into details, he obtained in this way a basis of the subalgebra Uq(n )
with many remarkable integrality and positivity properties, called the Kashiwara{
Lusztig canonical basis. The most remarkable property of this basis is that it induces
a basis of every representation that Uq(n ) generates. This might seem esoteric,
but all these results continue to hold even when q = 1, and as such they provided
unsuspected and revolutionary results in the representation theory of ordinary Lie
algebras g themselves. There is also some non-commutative geometry behind the
canonical basis, which remains largely unexplored.

5. Braided algebra, a calculus for non-commutative geometry

Coming out of the deeper structure of quantum groups is a particular brand of
non-commutative geometry, called braided geometry (Majid 1991a, 1995). In fact,
its inspiration is not so much the `inner’ non-commutativity within one algebra (as
motivated by quantization) but the `outer’ non-commutativity between any two inde-
pendent algebras. For example, when we consider a box of photons or other identical
bosonic particles in quantum theory, we symmetrize the wave function under all per-
mutations of the particles. For a box of electrons or identical fermionic particle, we
`skew-symmetrize’ with a 1 factor whenever two particles are exchanged. It turns
out that a deeper point of view on the parameter q in quantum groups (di¬erent
from thinking of it as related to Planck’s constant) is that q (or the matrix R) plays
the role of this 1. We say that such systems have `braid statistics’. We have already
explained in x 4 that the representations of quantum groups are intrinsically braided,
i.e. anything on which a quantum group acts acquires braid statistics. In e¬ect, the
usual division in nature into particles of force (bosons) and the building blocks of
matter (fermions) is blurred in non-commutative geometry, and interrelated with
quantization.

This idea is far reaching. Most constructions in mathematics involve applying a
sequence of operations or maps. We can think of these as `boxes’ with some inputs
and some outputs, and make more complex computations by `wiring up’ the outputs
of one into the inputs of another, much as one wires up the silicon chips in a computer.
The big di¬erence in braided mathematics is that when this wiring up requires us to
cross our wires, we allow a non-trivial operation R, typically di¬erent for an under-
or an over-crossing. This is shown in  gure 6a, where the product on an algebra B is
depicted simply as a joining of two copies of B to result in one copy. Information ®ows
down the page, i.e. we `scan’ the diagram from top to bottom. The  gure expresses
associativity and the concept of an identity element as a map . Likewise, the axioms
for the braided-mathematical version of a group, i.e. a `braided group’, are shown in
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Figure 6. Axioms of a braided group as diagrams.

the rest of the  gure. As for quantum groups, there is a `co-product’ that branches
from one to two copies. It obeys the axioms in  gure 6a turned upside down.

It turns out that most general constructions in group theory and quantum group
theory go through in this braided setting. For example, the notion of conjugation is
shown in  gure 7. On the left-hand side is a `breakdown’ of the steps involved in usual
conjugation in a group. One can think of a group trivially as a braided group with a
co-product that simply doubles up the group element. We double up h in this way,
move it past the g, apply the antipode or inversion operation S and then multiply
up. The corresponding diagram is shown on the right. In this way, one arrives at a
theory of algebras and groups that exists entirely at the level of braids and branches.
One can do proofs, roughly speaking, by treating these as actual strings, i.e. this is
a kind of knot-theoretic algebra.

For example, the algebra B = [x] of polynomials in one variable x is a commu-
tative algebra (so this has nothing to do with quantization) and can be regarded as
a braided group with

x = x 1 + 1 x; x = 0; Sx = x; (5.1)

which expresses the additive group law on the line. But, because we regard it as
braided, there is a factor q, say, when one copy [y] of the algebra moves past
another independent copy [x]. This is the correct point of view in the formula (1.1)
for the q-deformed derivative. Its origin is therefore not exactly quantum groups but
the more primitive idea of braid statistics. Similarly, the quantum plane B generated
by x, y as in (3.1) is not in any natural way a quantum group but it is precisely a
braided group. It has an additive co-product as in (5.1) but with braiding de ned by a
matrix R. It is the same as the one used in constructing the knot invariant associated
to Uq(sl2) in x 4. So the same circle of ideas allowed Jackson’s q-analysis, in the 1990s,
to be generalized from one to many variables. Such quantum-braided planes in turn
feature in the deeper structure of quantum groups Uq(g) (Majid 1999a).

Finally, having the proper tools, one can press on and develop further aspects of
non-commutative geometry. First of all, one needs `di¬erential forms’ for which the q-
deformed derivatives are the associated partial derivatives. On a general algebra M ,
one can specify an abstract exterior algebra of di¬erential forms (d; (M )) obeying
certain properties, notably that d2 = 0. The main di¬erence is that we do not assume
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Figure 7. Conjugation written as a diagram.

that di¬erentials such as dx commute with coordinates such as x. Building on this,
the non-commutative versions of the main notions in di¬erential geometry, such as
`principal bundles’ and `gauge theory’, but with quantum group symmetry were
introduced in the early 1990s (Brzeziński & Majid 1993). Without going into details,
one arrives at a proposal for a `quantum (Riemannian) manifold’ (Majid 1999b) as an
algebra M equipped with a di¬erential calculus, a frame quantum principal bundle,
and, for a Riemannian quantum manifold, a second dual frame quantum principal
bundle. This is not yet quantum gravity, but it is, at least, one approach to a good
part of the required mathematical infrastructure.

6. A new philosophical basis for the 21st century

We return now to our opening theme, the problem of the uni cation of quantum
theory and gravity. This is summarized in  gure 8, which plots the mass energy and
size of many objects in the Universe. The key point here is that everything to the
left is forbidden by quantum mechanics, which says that particles are also waves of
a wavelength inversely proportional to the mass energy. Everything to the right is
forbidden by Einstein’s theory of gravity, which says that as one puts more mass into
a given volume it forms a black hole of a size proportional to the mass. Where these
two overlap, namely at masses and distances around

mPlan ck =

r
c

G
= 2:177 10 5 g; xPlan ck =

r
G

c3
= 1:616 10 33 cm;

both theories break down. It is certainly possible to imagine phenomena near the
bottom of the `vee’ that could test a complete theory of quantum gravity.

Taking another tack, as we look further and further out into space we see the
Universe as it was earlier and earlier in time, since it has taken light longer to
reach us. From this, a fairly conventional picture has emerged; that as we go back
in time the Universe was smaller and smaller and gravitational  elds stronger and
stronger. Hence, at some point, both quantum e¬ects and gravitational e¬ects will
be strong and our extrapolation will start to break down. Any predictions before
that point, i.e. about where the Universe came from, really have to await a theory of
quantum gravity. Conversely, astronomical data could provide a testing ground for
such a theory. For example, just as light travelling over solar distances provided the
 rst tests of Einstein’s theory, high-energy gamma rays travelling over cosmological
distances could provide a test of quantum geometry, any further deviations predicted
by that being ampli ed over the vast distances involved.
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Figure 8. Size versus mass energy of objects in the Universe.

We conclude this article by stepping back and asking if there are at least some
philosophical insights to be gained from all this. After several centuries of the pursuit
of science or `natural philosophy’ and within sight of the `holy grail’ of quantum
gravity, are we any nearer to answering the deeper questions of existence? We will
now argue that we are, although it has to be said that what follows is strictly the
author’s personal view, expressed a decade ago in Majid (1991b).

To begin with, theoretical physics usually takes the reductionist view that there
are indeed some fundamental laws of nature, of which our experiments and obser-
vations are representations. Thus it is supposed that something is absolutely true,
and that something else measures or observes it. However, one of the themes of
modern mathematics is that such evaluations should generally be thought of more
symmetrically as a `duality pairing’ of one structure with another. An evaluation
f(x) can also be read x(f), where f is an element of a dual structure. Since the-
oretical physics adopts the language of mathematics, such an `observer{observed’
reversed interpretation of the mathematical structure can always be forced, but will
the dual interpretation also look like physics? We postulate that this should be so as
a general principle of representation-theoretic self-duality, that a fundamental the-
ory of physics is incomplete unless such a role reversal is possible. We can go further
and hope to fully determine the (supposed) structure of fundamental laws of nature
among all mathematical structures by this self-duality condition.

Such duality considerations are certainly evident in some form in the context of
quantum theory and gravity. The structural reasons, from a mathematical point of
view, are summarized to the left in  gure 9. For example, Lie groups provide the
simplest examples of Riemannian geometry, while the representations of similar Lie
groups provide the quantum numbers of elementary particles in quantum theory.
More generally, both quantum theory and the theory of curved spaces are needed for
a self-dual picture, and, in general terms, Einstein’s equation for gravity does indeed
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Figure 9. Representation-theoretic approach to quantum gravity.

equate a geometrical object (the Einstein tensor, which measures the curvature of
space-time) to a quantum-mechanical object (the vacuum expectation of the stress
energy tensor, which measures the matter content), i.e. it can be interpreted as some
kind of self-duality constraint. The diagram also suggested (a decade ago) that the
unifying language for both quantum theory and gravity would be category theory
itself, a very general setting bordering on semantics.

Quantum groups provide a simple setting where the uni cation is indeed possible.
They are a self-dual class of objects that unify both groups (curved spaces) and
group duals (quantum numbers), as we have seen to some extent in earlier sections.
One can then ask for self-dual quantum groups as a constraint on the structure of
physics, leading immediately to the Planck-scale quantum group [x] / [p] in x 3
with features somewhat like a black hole. The representation-theoretic duality has
a clear physical meaning in this context as an observer{observed dualism. The dual
quantum group contains the `states’ , as explained in x 2, but, by the self-duality,
someone could equally well think of as an observable and write (x) as x( ).

In addition to the `end’ of theoretical physics in the form of quantum gravity,
we can ask also about its `birth’ in Aristotelean logic and the scienti c method.
The structure is that of Boolean algebras, and these too are self-dual under the
interchange of AND with OR (an operation implemented via the NOT operation).
They are on the right in  gure 9. Going above the axis takes us to Heyting algebras
and on into intuitionistic logic, where one drops the law that either a proposition or its
negation is true. This is also the essential feature of the logical structure of quantum
mechanics. Dual to this is the notion of co-Heyting algebra and co-intuitionistic logic,
in which one drops the axiom that the intersection of a proposition and its negation
is empty. It has been argued by F. W. Lawvere and his school that this intersection
is like the `boundary’ of the proposition, and, hence, that these co-Heyting algebras
are the `birth’ of geometry. Moreover, both geometry and quantum theory take us
o¬ the self-dual axis. This is also con rmed by physics: in Aristotelean logic (the
simplest theory of physics), we can regard a chair or a `not-chair’ as equally good
concepts, but this self-duality is lost, for example, in a theory of gravity alone (a
chair curves space, a not-chair does not). If the above is correct, the person who
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regarded not-chairs as real should instead interpret gravity as a quantum e¬ect and
vice versa (with self-duality being restored only in a combined theory of quantum
gravity). Thus, when we say space is almost a vacuum except for quantum e¬ects
(the left slope in  gure 8), the other person would say that space is almost full of
not-chairs (from their perspective the right slope in  gure 8).

In between these extremes, a well-known example of a self-dual setting is that of
Abelian groups such as the real line. For every (reasonable) such group, there is a
dual one G^ of its representations. Especially important is that G^̂ is isomorphic
to G. The position and momentum groups in ®at space are dual to each other in
this way and Fourier transform precisely allows us to transform our point of view
from one to the other. This familiar setting gives a clue to the philosophical basis
of the principle of representation-theoretic self-duality. For, if some theorist thought
that a group G was the `true’ structure underlying a law of physics and that G^
was its representations, a more experimentally minded physicist might equally well
consider G^ as the true object and G as its representations. Only in a self-dual setting
could both points of view be entertained. This says that the principle has its origins
in the nature of the scienti c method. And, if Einstein’s equation and other laws
of theoretical physics could be deduced from such a principle alone, we would have
achieved a Kantian or Hegelian view of the nature of physical reality as a consequence
of the choice to look at the world in a certain way through logic and the scienti c
method. Of course, it is never going to be that simple, but it is something to think
about on a rainy day in the next millennium.

The author is a Royal Society University Research Fellow and a Fellow of Pembroke College,
Cambridge, UK.
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